Note: This document was created by modifying a Shock 2 specific document. Almost all of it has been updated to be consistent with Thief 2 (although lingering typos, etc., may exist). The beginning sections generally tend to contain information which is useful to all designers, whereas later sections detail knowledge which is usually used in specific circumstances. The following sections, while useful, are particularly inappropriate for beginning designers: Pseudoscripts, everything on Particle Effects except maybe Particle Overview, everything on the Tweq system. Note also that some of the material covered here is covered more rigorously in the following docs: Locks & Doors.doc, Moving Terrain.doc, Room Brushing Tips.doc, Using Archetype Scripts.doc, Traps & Triggers.doc, and DarkAI.doc. Those documents are also useful reference materials for beginning Thief 2 designers.

Another Note: This document is intended to be primarily informational; it is not intended as a tutorial. There are some examples in here, but they don’t go anywhere. The original Shock 2 version included “homework” sets for designers to test their newly acquired skills. This version does not include homework, but if you wish or if you don’t quite understand something, you are encouraged to implement an example for yourself in DromEd.

The Basics

Getting Started

Okay, the first thing you need to do is a bit of mojo to make all the objects know how to function properly. For any level that you want to have objects functioning in, you need to type the following at the dromed command line:

script_load gen

This loads up a set of “scripts”, the pieces of code that control how objects behave in all sorts of situations. You should only need to do this once ever for your level, as it is saved out with it the next time you save the .MIS file.

Note that eventually, every Thief 2 mission will have its own script which includes all of the functionality of the gen script and all scripting needs specific to that mission. When that happens, you will have to drop the gen script and load the new script, which will be called something like “miss12”.

The Hierarchy
Your basic tool for placing objects is the “object hierarchy”. This is a list of all the objects, organized by what “kind” of object they are. Off of the top level, most of what you will be interested in is the “physical” category of objects. There are a number of things you can do from here, but the only thing you really want to be doing is setting the “create type”. Select the kind of object that you want to make, then click “create”. Now you have that object on your “brush”, and when you create an object by dragging out in the editor, you will get an object of that variety.

All of the objects listed in the object hierarchy are object “archetypes”, which means that they don’t actually exist anywhere, they are just templates for creating actual objects. Right after the object name you will see a number, like (32). This is the objects “obj ID”. All archetype objects have a negative obj ID. Objects you place in the world will have a positive obj ID. Don’t worry if this doesn’t make too much sense right now, it will become more relevant later.

Object List (Alphabetical)

While the hierarchy contains all of the objects possible to place in the world, it requires a number of clicks to get where you want in it. Once you have some objects placed down already, a more efficient tool to use is the “alpha list” which is an alphabetically sorted list of all the objects already in the level. Bring it up by typing “obj_alpha_popup” at the command line, or selecting “object list” from the Tools pull-down menus. Double click on an object in the list, or select it and click “ok”. This will set the current “create type”, just like going through the hierarchy.

Placing a Decorative Object
Okay, now lets try it out with a simple, non-funtional object. Bring up the object hierarchy, and go to Physical > Decorative > Tombstone. Select the “Gravestone1” object, and click Create to set it as the create type. Make sure your dromed brush type is set to “object”, and then just drag out a little rectangle (the shape doesn’t matter) where you want the object. It is now an object in the world, and can be dragged around or put wherever you want!

Flooring

A handy tool to know about is the “floor me” button that comes up in the brush GFH when you have an object selected. This will move the selected object to be sitting flush on the closest solid surface immediately underneath its current location.

Properties

All objects have a collection of data associated with them called “properties”. You can think of this as data that is stored inside that object. The tricky part is, the properties in an object are also inherited from all the objects archetypes that the object comes from. So most actual objects in the world have very little in the way of properties sitting on the object proper – most of the information is hung off of the object archetype that the object comes from. So the tombstone object in the world doesn’t know by itself what it looks like, whether it can be picked up, etc. Instead, the tombstone archetype has that information.

Let’s take a look at the properties on our tombstone. Select the object, then click “properties”. This will show you all of the properties on the object and on all of the archetypes it comes from. You can open up the archetypes all the way up the tree to see what properties are stored at what level. This can be useful for figuring out what is actually going on with all of your objects.

Placing a Functional Object

Okay, now we are going to place another object, this time one with actual, functional game abilities. The basic procedure is identical: bring up the object hierarchy, select the object, and then drag out the object in a dromed window to create it. Put down a key (Physical > Key > Key1) in the world.

Modifying Properties
Now, say you want to modify some aspect of how our key behaves. For example, if we want to change it’s object name, such that when you pick it up it says “Castle Key”. We will do this by adding an “object name” property on the object at the lowest level of the object hierarchy, on the actual object itself. Bring up the “properties” window. Select the actual object itself (it’s at the very top of the list, the one with a positive obj ID). Then click “add”. This brings up a vast and intimidating list of properties and property categories. Don’t worry about them too much yet – the one we want is under Inventory > Object Name. Select it, and then it will bring up a little dialogue for you to enter some data. Now, this dialog probably already has some information in it – this is because the object already has that property at a higher level of the hierarchy. The lower-down information you are placing now will override that. Type in “Castle Key”. Note: Because Thief is shipped in 3 languages, we do some tricky stuff with the object name property to make names like “castle key” appear in the correct language, but lets not worry about that for now. It is covered below in the Translatable Strings section

That is the general mechanism you will use for setting a wide variety of different properties. In many cases, properties are most relevant for certain kinds of objects. For example, the “KeySrc” property is relevant for objects that behave like keys, but is not relevant for AI objects. One important thing to remember is that for now, you should always be modifying properties only at the lowest level of the hierarchy, on the object itself. Modifying the objects in the hierarchy happens only under specific circumstances.

Linkage, Containers, Simple Physics

Staying Up To Date

Note: This document was modified from a Shock2 document. This section is more relevant for a project that is in active code and level production mode, which Shock 2 is but Thief 2 is not as of this writing. The information is still relevant right now, it is just not very timely (it’s a bit early).

As Thief 2 is still actively in development, several elements of the tools are changing from day to day. It is important that you stay current with the latest tools and data to avoid spurious bugs and also to make sure that you have the tools that are as functional as possible. There are two key things to stay up to date with.

1. The executable. You can get a new Dromed from a directory that will be named at some point in the future (it will probably by R:\prj\Thief2\release). Just copy everything in the directory into your local DromEd directory. You’ll receive mail whenever a new version is available, and you should always get a new version when one becomes available. The more paranoid (or perhaps, prudent) among you will rename your existing executable first just in case there are strange problems (therefore in case the new version has a problem, you can revert to the old version – we will also probably have a “last release” backup directory, so don’t worry about this too much for now).

2. The .GAM file. This file (dark.gam) contains all the information that the game uses for the object archetype, plus a few other pieces of data. Like the executable, make sure you get the most up-to-date version. It can be found in a directory to be named in the future (which will probably be R:\prj\Thief2\levels\shipping). Just copy it into your local directory. Unlike the executable, it can change pretty frequently, so often it changes without mail being sent. Just get in the habit of checking once a day, or at least when you go to get a new DromEd release.

Using the Link Editor

You may remember from last time, when we created the player start location marker, that we had to set up a link between it and the player archetype. Now we’ll go into more detail about what that happens in that process, and what links mean.

Generally speaking, links are a “connection” between two objects. Links come in a variety of different types (or “flavors”), like the PlayerFactory link, or a TPathLink (used for elevators). By far the most two most common links used when creating and placing objects are the Contains link and the ControlDevice. We’ll cover ControlDevices in a later lesson, and today mostly concentrate on Contains links.

A link has several components: The object it goes from, the object it is going to, the type of the link, and any data associated with a link. The type of data is dependant on the type of link. Many links don’t carry any data at all. Links are also known as “relations”, so if you hear this term the mean approximately the same thing.

The main way to get to the link editor is by selecting an object, then clicking the “links” button in the brush GFH. This will pop up a dialog that shows you all links to and from the current object, and lets you edit, create, and delete those links. You can also get to the link editor through the Properties of the object, but that tends to crash more often so isn’t recommended.

Adding Links
Most of the time, you’ll be adding links between objects. To do so, click the “add” button from the main link editor dialog. This will bring up another dialog, where you set the objects that the link goes between, and the type of the link. Note that the link dialog starts with a bunch of link types with ~s at the beginning, like ~ControlDevice. Don’t use these! These represent reverse links (or “return” links) – if there is a ControlDevice from object A to object B, then object A’s links dialog will show a ControlDevice to object B, and object B will show a ~ControlDevice to object A.

In layman’s terms: Never place down ~ links, only normal links.

Deleting and Editing Links

If you want to get rid of a link, just select it in the link dialog, and then click Delete. It will ask for confirmation before actually destroying it. Note that in order to select the link you want to delete, you can only do so via the first column of data, with the link ID.

Some links may also require you to set the data on them. Most links do not, and what that data means is different for each link. If you do want to edit the data, select the link (by the first column, as mentioned above) and then click Edit Data. Another dialog will pop up for you to set the link’s data. Note that the main link dialog will probably not update with the new information, but it has been changed.

An example of how data on links is used: elevator way points. Elevators are moving terrain objects that follow a path which, similar to patrol routes, is defined by waypoint marker objects which are linked together. So, for example, the elevator might go between floors 1, 2, and 3. In this case, there would be waypoint markers at the 3 places the elevator should stop (the 1st, 2nd, and 3rd floors) and TPath (which is an abbreviation for “moving terrain path”) links between these waypoints. There is data associated with each of these links which defines how fast the elevator goes between the linked waypoints. Suppose we want the elevator to go slowly from floor 1 to floor 2 but very quickly from floor 2 to floor 3 (for some reason). In that case, the link between the first floor waypoint and the second floor waypoint would have a low number for data (such as 1, meaning 1 foot per second), and the link between the second floor waypoint and the third floor waypoint would have a high number for data (such as 50, meaning 50 feet per second).

How containers work

All that theory is nice, but here’s some actual practical application. Let’s make a container. A container is very simple, it’s just the container object iself (a chest, footlocker, etc.). It is connected to its contents by a Contains link. That’s all there is to it. By convention, the contained object is placed near the container, but this is just to make it easy to figure out what is going on when looking at the situation with the editor. There is no technical requirement about the relative positions of the objects.

Note: Unlike Shock2, Thief containers should never contain more than one object. There is no technical restriction here, but if you have a container which contains multiple objects, you have created a “design bug” in your level which you will have to fix. Another bug that you can create is by contains linking from an object which is not a container. In this case, the contained object will be neither visible nor obtainable in the world until you fix the bug by deleting the contains link. The point here is that the property and link systems allow you to use the editor to do things that the game does not support. This is a very good thing for designer flexibility overall, but you should not expect DromEd to do any error checking for you (although it may be nice and do a little if you are lucky).

Viewing Links Graphically

One tool that you may find useful is “link_draw_on <linktype>”. You specify the link of link you are interested in seeing as the parameter. This allows you to visually see in the editor the links between objects, including Contain links. Although it is generally too cluttered to always leave it on, it can be a useful tool for spotting aberrant links, and for figuring out what is going on in a crowded room with many containers. Use “link_draw_off <linktype>” to turn it back off.

So, for example, to see all contain links, run:

link_draw_on contains

Basic Physics Theory
Some objects in the world have physics. This physics shape has a general correspondence with the visual extent of the object, but is NOT an exact match. Basically, each object has a basic physics type, and some parameters that control the size of the shape.

There are basically 4 physics types: Point, Sphere, Sphere Hat, and OBB (short for Oriented Bounding Box). Points are the simplest physics model, and very few objects you will ever place as a designer use this model. Spheres are what you would expect, like a big marble, and are the most common physics type. Sphere Hats are like spheres, but have a flat surface on top that other things can balance on. OBBs are rectangular prisms (stretched cubes), and can be rotated in any direction.

Most furniture is an OBB, since that shape is the easiest to fit to most of our models. The big drawback is that OBBs can’t be dynamically pushed around the way the other physics models can. You can have OBBs that move along a controlled path, like Doors and Moving Platforms, but you can’t have one fall and tumble. Spheres and Sphere Hats, on the other hand, can be pushed and torqued around to some cool effects.

Most objects that you can pick up don’t have physics as they are sitting around on the ground, but only have a physics model when you toss them into the world or some effect happens to trigger their moving (explosions, etc.).

For the most part, you shouldn’t have to be setting any physics properties. Objects that you get out of the hierarchy should have all the right settings on them, and you want to stick with those settings in the vast majority of cases. Only rarely when you need to cheat a particular situation or do something tricky (or are creating new archetypes) will you need to get your hands dirty with this.

In Thief, we frequently experienced bugs where objects had physics properties which were different than those of the template object of the same type in the hierarchy. This would happen if, for example, the “chair” template in the hierarchy had the size of its sphere phys model reduced slightly, but all “chairs” that had placed in the world didn’t get automatically updated. If and when we get a similar bug phenomenon in Thief 2, we’ll let you know how to deal with it, but the Fixing Physics Globally section, below, is a good example.

Practical Physics
Okay, here’s 95% of what you should ever really have to know about physics: show_phys_models. Running this command in DromEd will toggle on and off a mode where it draws the actual physics shapes of the objects in the world in wireframe, superimposed on the world. This is really useful for seeing strange physics errors, and determining what objects in a room are going to trip up the player or actually block shots in a firefight.

Another important thing to look out for is that every object which has physics must be in the world at all times. If it is outside of the world it will fall endlessly, slowing down the game fairly traumatically. It’s just generally a bad thing. Your monochrome will be full of spew about that if it happens, so that is another clue to look for.

Mojo: Fixing Physics Globally

Sometimes you will have a problem with an entire class of objects on your level. Usually this is due to an instantiated property that needs to be re-set. Instantiated properties are properties where every object has the property locally, rather than getting it from its parent. Physics properties are one such problem. If you turn show_phys_models on and one particular object is consistently (or even mostly) wrong, then you need to fix them globally.

A later lesson will cover the full suite of “hilight” commands in more detail. For now, here’s what you need to do:

hilight_obj_type objname

(Where objname is the name of that class of object, so for example: hilight_obj_type chair)

hilight_rem_prop phystype

hilight_add_prop phystype

(More generally, the name of the property you are re-instantiating is the argument. In this case, it is the physics type property, whose “true name” is phystype.)

hilight_clear

(This just cleans up the hilights.)

If you then fire up show_phys_models to check, you should see that all instances of that particular object are now fixed, physics-wise.

Strings, Doors, Rooms

Translatable Strings

All of the text in the game that is presented to the user has to be translated for all foreign versions of the game. This requires a certain format when setting string information in properties that is a little bit unwieldy, but will make our lives a lot easier down the road. Essentially, you have to assign a “name” to every string, as well as the actual content of the string. This name must be unique among all objects that have this property. A convenient trick for achieving this is to just use the name of the object as your strings name. So where before, you might have just used

A gravestone

for an object name, now you need to use:

Gravestone: “A gravestone.”

The above example illustrates the format, which is:

Name: “text”

The quotes and the color are critical, capitalization and whitespace are not. If you want to override this property for a particular object, you can give it any name you want, it just has to be unique, like KensGravestone or Book24 or whatever. However, there are some rules about what characters are legal in a string name. To be safe, only use letters and numbers in your string name. Spaces are right out. Underscores are about the only legal non alpha-numeric characters you can use. String names are only unique within a given property, however. So it is okay if all of the translatable string properties on a given object all use the same name.

Note: Most object naming will happen at the hierarchy level which, as mentioned above, is only to be edited under specific circumstances. Ask before naming a special instance of an object. For one thing, we need to keep track of all such objects for translation purposes later.
Doors

Note: See also the Locks &Doors document.

The basics of doors are very simple. All door archetypes can be found under Physical > TerrainLike > Doors. Essentially, you put down a door object where you want it to go, and pretty much everything just works. This gives you a door which opens and closes when you frob it, will physically stop you from going through it, and blocks sight behind it. Now, when a door opens, it needs a space to open into, so you have to cut out an appropriately sized space for the door to open into. If the door does not have appropriate space, it will just go out of the world, which is a very bad thing. It is also very important that the doorway is the same exact height and width (but not thickness) as the door inside it. Otherwise, some rendering weirdness may occur.

All doors have an open position and a closed position. These positions are set by the data fields in their associated Door property. You almost always want to place a door down in the closed position. If for some reason you want to place a door in the open position, simply set that field in the property for that door.

Note that the Door property is an instantiated property, so if you have changes in the Door archetype that you want to get propagated down to the individual, actual doors, you will need to do the hilight_obj_type, hilight_rem_prop, hilight_add_prop mojo discussed in the previous lesson.

A full coverage of more complicated door behaviors, such as locking and unlocking, and complicated opening mechanisms, will happen in the next lesson. For this lesson, we are only focusing on basic door theory and simple door operation.

Sight Blocking and Portalization

One primary use of doors is to block out areas from the player’s sight, so that the framerate can be kept to an agreeable level. Normally, objects don’t block line of sight. That is, even if an object is visually blocking a corridor, the renderer still draws everything behind it. Doors are special in this regard – they will either connect to a nearby portal (if placed right on top of one), or create their own the next time you portalize. So, in order to really see that effect working, you will need to portalize after placing doors in your level.

To verify that a door is actually blocking the line of sight down the hallway, after portalization just try setting the RenderType of the object to Not Rendered. You should see a flat black wall where the door was.

Rotating vs Translating

Doors can open in one of two ways: they can rotate around any axis, or they can translate along any axis. They can only do this for one axis, although the point around which they rotate can be set. There are two separate properties for these two, RotDoor and TransDoor. The data in these properties specifies the door’s behaviors, like opening / closing speed, and how far it has to move to open correctly. All the ready doors in the hierarchy will have the right parameters set for opening and closing “correctly”. You can, however, override these properties on your concrete (placed in the world) object if you want some different behavior. For example, a door that opened only partway would just have its “open” position set to be nearer to the closed position.

Room Brushes

A room brush is a special kind of brush that has no physical manifestation in the world. The room brushes in your level should form a coarse layout of the whole level. The AI and sound systems use the room network to decide how to function properly, and the player’s transitions between rooms can be used for triggering all sorts of in-game effects.

Conceptually, you should have a room brush for each logical room in your level. So an office is one room, but an office with a bathroom off of it should be two rooms. The most important thing with room placement is that they be an accurate representation of the general shape of your level. You would not want to represent a long U-shaped corridor with a single room brush, for example. By actually having the room brushes follow the contours of the level, the AI and sound systems have the information that they need to operate correctly.

The 3 Rules

Building room brushes is a pain in the butt. That is just a true fact of the universe. However, it is an important part of making your level work correctly. Putting down room brushes themselves is pretty easy, as they operate identically to normal rectangular “fill air” brushes (though, of course, they do not modify the geometry of the level). To place a room brush, just set the brush create type to “Room”, and drag out a brush in the world. You probably want to have the grid off while doing this, so that your rooms don’t exactly line up with your terrain brushes – you don’t have to worry about your room brushes being lined up for level optimization purposes at all. The thing that makes them difficult is the constraints that must be satisfied in order to have the room system be able to parse the room structure correctly.

Rule #1: The center of a room brush must be inside the world.

Basically, this just means that the center point of a room brush can’t fall in a spot that is “solid”, which includes both spaces that aren’t covered by any terrain brush as well as spaces that are filled to solid. Some care must be taken when room brushing a room with a lot of complicated internal details that the center of the room doesn’t happen to fall inside a pillar or other decorative feature.

Rule #2: The center of a room brush cannot be inside another room brush.

Room brushes can overlap. They just cannot overlap so completely that the center of one falls inside the bounds of another. The actual border between two overlapping rooms is in the middle of the space that they overlap in. If the overlap is small, then you don’t really need to think too much to figure this out, but when the overlap is large, it gets harder to just eyeball it. So the rule of thumb is, keep your overlaps small. This will make your life easier in figure out what is actually going on, and help you avoid violating Rule #2.

Rule #3: Everywhere that can possibly be reached must be inside a room brush.
This rule means that your room brushing of a level must be complete. If the player (or any object, for that matter) gets outside of the room network, then the game will lose track of them. This is bad. Generally speaking, you want to make room brushes a bit bigger than the rooms that they contain. This will help you abide by this rule (so that the player can’t push too close to the edge of a physical room and escape the room brush), but also makes it easier to select those rooms from the editor (since if they are the exact same size, the two wireframes overlap heavily).

See also: Room Brushing Tips.doc.

Building the Room Database

Once you have room brushed out your level (or the subset of it that you are dealing with), you have to build the room database. You can do this with the “rooms_build” command, or by selecting Tools > Build Room Database from the pull down menus in Dromed, or by clicking the “Compile” button in the GFH area with a room brush selected. If you have a monochrome hooked up, you will see some statistics there on the results of the database building. This data is saved with your level, so just make sure you run this and save out after creating or changing the room structure of your level. This process is roughly analogous to portalization, but for the room database instead of the geometry.

Room Tools Overview

There are some tools for making the somewhat onerous task of room brushing out your level a little bit easier.

show_player_room

This will draw the wireframe of the player’s current room as you run around the level. It can be very useful for “eyeballing” a complicated set of room brushes, and also for determining exactly where the transition point is between two rooms so that you can tune effects properly.

brush_to_room <factor>

This will take the current brush, and make a room brush that is larger than it by a certain percentage, where that percent is the argument given to the function. So if you type the command:

brush_to_room 10

You will get a room brush which is 10% larger than the brush you had selected. This tool can make it easy to rapidly fabricate most of your room brushes, especially if you already have appropriately shaped terrain brushes that you used in the construction of the room. Also note that this can be used on an area brush, as well as terrain brushes, so you can area brush down until you get the brushes that you think ought to be in the room, and then brush_to_room it.

Note: “brush_to_room 10” is keybound in DromEd to Shift-Insert.

Room Properties

Like objects, room brushes can have properties set on them. Unlike objects, the metaphor for properties on rooms is a bit different. At some level it is the same, rooms have properties hung off of them, and there are concrete rooms (with positive IDs) and abstract rooms (with negative IDs) that the concrete ones can derive from. Setting them is a similar process as well, you select the room, then click the Edit button to get to a familiar property viewing / adding dialog.

The real difference is how you specify what kind of room you are putting down. With objects, you set the “create type”, then place down an object of that type. With rooms, you build (place down) the room network out of generic rooms, then transform the few special ones into that specific kind of room.

Also, with rooms, there is not a one-to-one mapping between room brushes and room objects. If you have 2 or even 15 room brushes and they are all of the same type (WestWing, BaseRoom, whatever) then there is only 1 set of properties that is shared by all of those rooms. Conceptually, there is only 1 room, but that room requires multiple brushes to represent it in the world.

There are two types of these conceptual room objects, abstract and concrete. These are equivalent to abstract objects (with negative IDs, like those in the object hierarchy) and concrete objects (those objects actually placed down in the level, with positive IDs). Both types of rooms appear in the room browser, however. Whenever you are creating a new room for the purpose of adding properties to a room in the level, always use a concrete room. Stay away from abstract rooms unless you know what you are doing.

Making a Room with Properties

Okay, to get a bit more practical, when you want to create a room with its own set of properties, you need to make a new room object. Do this by clicking “create” in the GFH area with a room brush selected. This will take you to a dialog that looks a lot like the object hierarchy browser, but it is the room hierarchy. Select the room you want to derive from. For now, just use EnterRoom, but for more information on your other options, see the next section of this lesson.

Your new room will derive from (or “descend from”) whatever room you have selected. With that “parent” room selected, click “Add”. If the parent room is abstract, it will ask you whether you want to make it a Concrete room. Answer “yes”. If the parent room is concrete, then your new descendant room will also be concrete, so it won’t ask.

Now you have a new, concrete room in the room hierarchy browser. You can select your new room, and click “Edit” to set the properties on it. Like with objects, the property viewer for your room object will also allow you to look at (and set) properties on your ancestor rooms, but you want to restrict yourself to only modifying properties on the lowest level of the hierarchy, your actual concrete room (at the top of the list).

Okay, in order to actually put this concrete room in the world, you have to select a room brush in the world. Then click the “Create” button in the GFH to get to the room hierarchy browser. Select the kind of room you want the room brush to belong to. Then, click the “Create” button in the hierarchy dialog. Voila! Your room brush is now part of the chosen room.

This may seem like a lot of work, but it is pretty quick to do once you are familiar with it. Also keep in mind that the majority of your rooms do not need any funky properties on them, and so can just be ordinary BaseRoom rooms.

Room Scripts

One of the most useful properties to put on a room is the “script” property, in which you specify which scripts are attached to this room. One example of a use for such a script is to detect when the player has entered a room, so that some effect can happen (a voice-over, a door closes, etc.). This type of functionality is talked about more in the Traps & Triggers.doc.

Triggers

See also Traps & Triggers.doc, which is more specific to Thief than the below description, which is fairly generic.

The Trigger Effect

Triggers, and the “traps” that they trigger, are the source of a lot of level-specific customization and cool extra effects on your levels. The basic concept is fairly simple. There are all sorts of objects in the world (doors, lights, etc.) that will do something interesting when they are “triggered”. For example, a door can open when triggered, or a can turn on when triggered. There are also all sorts of things in the game world that can send out these triggers. The most obvious example is a push button on the wall, but there are a wide variety of others. This lesson will cover the most basic of the triggers, and the “traps” (triggrer-responsive effects) that they activate.

Traps are generally responsive to TurnOn messages, and TurnOff messages. They usually receive these messages over ControlDevice links. So the basic trap consists of 3 parts: A trigger, a trap, and a link between the two. Take a light switch as a simple case. There is the button, which is the trigger, the thing that controls the activity. Then there is the light, the thing which actually does the work, turning off and on in this case. Finally, there is a ControlDevice between the two.

Message Propagation

Links, you should be familiar with. But what is all this about messages? Objects can receive messages through a wide variety of means, but the main one that is relevant for level design and object placement is over links. If there is a link from object A to object B, then object A can send messages to object B via their controlling scripts. Usually when object A wants to send a message, it will send it down every appropriate link that it has. So if A is linked to both B and C, then B and C will both receive the message.

Scripts

All actual trap and trigger behaviors are defined in scripts. Scripts are a sort of lightweight mini-code that can be attached to an object. The script controls what it actually does when it is frobbed in the world, frobbed in the inventory, receives a message, etc. So for example, the thing that makes a button a button is its script – the button script knows that when it is frobbed that it should send out messages along all of its ControlDevices.

Scripts are put on an object through its “Scripts” property. All the relevant functional objects in the object hierarchy already have this property set to the right thing. Changing this property will change how the object behaves. In many cases, there are “variant” scripts that are very similar to the default behavior, but subtly different. If you want your object to use the alternative behavior, you do so by changing the scripts property on the object.

The scripts property is pretty straightforward, it is a list of up to 4 scripts you can put on an object. There is also a checkbox that controls whether or not the object also inherits scripts from its ancestors. Unlike normal properties, if an object has a script property instantiated on it, and also has a script property on its parent archetype, the object will run both scripts! This check box allows you to override this behavior, and make the scripts property act more like a normal property. In most cases, but not all, you will want to have this box checked. That should probably be your default setting. There is no hard and fast rule about when you should inherit and when you shouldn’t – that will have to be learned through experience.

For many of the variant trigger and trap behaviors identified in this lesson, you will have to change the script property. In almost all of the cases introduced in this lesson, you should override the script property on your concrete object, and turn off script inheritance.

Buttons

The most basic trigger available is the basic, one-state button. It just sends out TurnOn messages every time it is pushed, to all objects that it is ControlDevice linked to. However, it is incapable of sending out TurnOff messages. This behavior is caused by the StdButton script, and is the default for most of the buttons in the object hierarchy.

This sort of button would be useful for triggering stateless events, like playing a sound effect, or teleporting the player, for events which automatically return their state to normal (like an auto-closing door), for traps that only handle TurnOn messages, or for complicated things that just want to “advance” their state (like elevators).

Levers

The next step up in complexity is the lever. Please see the levers description in Triggers & Traps.doc.

Levers are best reserved for events with exactly two states. Doors that are not auto-closing are a common thing that want levers attached to (in cases where they cannot be opened normally by frobbing them).

Room Triggers

This topic was covered some in the previous lesson. You can put a script on a room which causes it to send a “TurnOn” message along all outgoing ControlDevice links whenever the player enters the room. Like any other trigger, you must set up a ControlDevice between the room object and the object to be triggered. Don’t forget that you must create a new unique room in order to link from it properly!

Multiple Triggers, Multiple Traps

A given object can “legally” have as many ControlDevice links going out of it or coming into it as you care to place. If an object has multiple ControlDevice links going out of it, then when it is triggered it will send out the appropriate message among ALL of the ControlDevice links. For example, this provides a way of building synchronized doors. If you put two ControlDevice links out of a lever, each of which goes to one of the doors, then both doors will open and close simultaneously. This technique is applied in more complicated traps. For example, you might want a scenario where the player entering a room turned off the lights, closed the door, and caused a trap to fire. The room could simply be linked to all of those “traps” independently, and then they would all go off.

The alternative case is easier to understand. If you have multiple ControlDevices coming into a trap, then it will respond to all of them equally. There are some exceptions to this rule that you will learn later, but for now that is a sufficient approximation. So if there are two separate buttons, each of which is ControlDeviceed to the same trap, then operating either button will trigger the trap.

Other Effects

There are a few other behaviors worth noting. Buttons are themselves “traps”, in that they receive TurnOn and TurnOff messages. This is basically the same as frobbing them, and they will act as a kind of relay station, dutifully sending along those messages down their own ControlDevices.

Another interesting behavior is that Doors will send out TurnOn and TurnOff messages as they open and close. So you can have effects that are triggered “in synch” with a door by linking them up with ControlDevices going from the door, not just to it.

Mojo: Hilight Tools

Two lessons ago we briefly touched on the hilighting tools. These are a fairly powerful set of tools for selecting a subset of objects, and then performing operations on that set. Here is an overview of the basic hilight commands. Learning them will make performing sets of mass operations on your level a lot easier, and less error-prone.

Hilight Selection Commands

· hilight_global (boolean toggle): If true, hilights everything on your level, otherwise, just the active brushes.

· hilight_obj_type (string function): Hilight all instances of an archetype. Note that you must provide the exact object name as it appears in the archetype (basically everything but the object ID).

· hilight_by_prop (string function): This will hilight all objects with a given property name. Note that you must provide the “true”property name, which may not be what appears in the big list when adding properties. Come talk to me (or better yet, send email) and I can look up the right true name for you to use.

· hilight_nonaxial (function): Highlights any terrain with non-90 angles.

· hilight_media (int function): Highlight terrain w/media_op of type <arg>.

· hilight_texture (int function): Highlight terrain w/texture id <arg>.

· hilight_brush (int function): Hilight brush_id, or the current brush if you use the argument 0.

· hilight_check_snap (int function): Hilight unangled unsnapped brushes, or if (1) all unsnapped brushes.

· hilight_split_obj (function): Highlight objects crossing a portal.

· hilight_room_id (int function): Hilight the specified room brush.

Hilight Utilities

· hilight_list (bool function): List objs, or, if arg 1, all brush IDs. This will go to your monochrome.

· auto_hilight (boolean toggle): Automatically hilight any bad brushes after portalization.

· hilight_autoclear (boolean toggle): If true, we autoclear old hilight and make it only active.

· hilight_clear (int function): Clear current highlights.

Hilight Effects

· hilight_do_snap (int function): Grid snap all hilight brushes.

· hilight_add_prop (string function): Add a named property to all hilit objects. Requires the “true name” of the property.

· hilight_rem_prop (string function): Add a named property to all hilit objects. Requires the “true name” of the property.

There are some other, even more complicated tools for altering and setting hilights, involving multiple orthogonal hilight bits that you can operate on. If you find yourself using these tools a lot and want something even more powerful, talk to someone.

Miscellaneous Objects

Object Lighting

As most of you are probably well familiar with most of the lighting functionality at this point, this will be brief. When you need to specify parameters of how a light behaves above and beyond just being a steady, omni-directional light of a certain brightness, you have to use a light object instead of a light brush. While these are more annoying in some way (like to create them, you have to go through the object hierarchy), they offer a lot of power and flexibility. Object lights are just ordinary objects, with the appropriate light properties set on them. Generally they want to be set to not rendered, but sometimes when there is a good physical source (like a light fixture of some kind) then you can simply attach the light properties to the otherwise normal object. In the Thief object hierarchy, most objects come with appropriate default lighting properties, although you will clearly have to build your own custom situations (such as a glowing skull).

The “standard” light property is simply enough, Renderer > Light property. This lets you set the brightness level of the light, as well as its radius (zero is infinite), and an offset. The offset is useful for objects where the light is coming from a specific point, like lamppost, or when you need to move the light away from the object a bit for the right visual effect, like a computer monitor.

Colored Lights

Note: The following is Shock-specific, and eventually will apply to the Thief 2 renderer as well.

Both light brushes and light objects can be made to be colored. Coloration for a light is determined by setting its hue (color of the rainbow) and saturation (how washed-out the color is) as well as its intensity. Shawn has made a good hue reference table, which is attached at the end of this document, and you can always get the right hue, saturation, value triplet by going into Photoshop or Paint Shop and writing down the correct numbers. Of course, you can always just play with it as well, and no matter what numbers you use as reference, you may want to tweak your final values.

All lights are actually “colored” lights, it is simply that the default light is set to zero saturation, so that the “color” of it is white. For light brushes, you can just go and set the hue and saturation in the GFH area, just like you set the intensity. In order to make a light object be colored, put a Renderer > LightColor property on the object itself. This will make any light coming off of the object have the specified color.

Spotlights

The default light is omnidirectional, meaning that it casts light in all directions equally. If in addition to the Light property, you use the Renderer > Spotlight property, the light cast will be in a directional cone. The size of the cone is specified by the X and Y values on the property. X is the “inner cone” of the spotlight, specified in degrees, and Y is the “outer cone”, also in degrees. The area within the inner cone is lit to the full intensity of the light, while the area beyond the outer cone is not lit at all. In between the light value is interpolated based on how far out it is. The default spotlight on an otherwise unrotated object points straight downwards, but you can alter this by rotating the object itself. In the Thief hierarchy, the following object is a spotlight that does not have an in-game representation (i.e. it is similar to the omni light brush): Object::Fnord::HackLight::SpotLightPoint.

Animating Lights

Note: For Thief 2, our lighting model is more akin to Shock 2 than Dark, as described below. This is contingent upon us getting our render-stealing up and running, though.

Lights also have a certain capacity to animate, that is, turn off and on. This is governed by the Renderer > AnimLight property. This is a fairly complicated property. The most important element of it is the Mode, which determines basically how it behaves. Many of these modes are only meaningful for Dark (see below). The ones that are supported for Shock are:

· Flip between min & max: This will just go back and forth between the “on” and “off”state of the light. The off state must always be zero brightness, or else things will look odd.

· Flicker min/max: Like “flip” but, the amout of time it takes to go between the two states will be random by a factor of plus / minus 50%.

· Max brightness: Light is “on”. Use this when you want a switchable light in the “on” position.

· Min brightness: Light is “off”. Use this when you want a switchable light in the “off” position.

Shock has one big limitation, compared to Dark, when it comes to animated lights (due to the fact that we have colored lights). Our animated lights can have exactly ONE non-zero value that they go to. So lights cannot go smoothly between points, or even have a “bright” state and a “dim” state. If you want lights that dim out, you have to construct two sets of lights, one for each lighting level, and make sure that as you turn one light on, you are turning the other one off. The animating light property lets you specify what the “max” and “min” light values are – use “max” to be the “on” state, and “min” should always be zero.

The other elements of the property are pretty straightforward. Offset and radius mean the same as they do on the normal Light property, while the times to brighten and dim are interpreted differently depending on the mode of the light. The last three elements, “currently rising”, “current countdown”, and “inactive” are used for tracking the state of the light and should be left alone unless you feel like really experimenting.

Lights as Traps

As was implied last lesson, lights also can have scripts attached to them that govern their behavior in various ways. The simplest way to use a light is to just treat it like any other trap, where you switch link a trigger (button, room, lever, etc.) to the light object. When light objects receive a “TurnOn” message they go to their full brightness level (exactly like setting the Max Brightness mode), and on TurnOff, they go to their minimum brightness level (which should always be set to zero in the property).

So, for example, it is extremely easy to construct a light switch. Just put down a light object, give it an animated light property, and set its mode to Min brightness (assuming it starts off). Then make a lever, controldevice-link the two together, and you are done!

The default light behavior is provided by the AnimLight script. Make sure this is on any light object you expect to handle TurnOn / TurnOff messages.

SelfLit

This property is used when a moving object needs to cast light. It basically does all of its lighting calculations every frame. As you might expect, this is extremely slow. You should basically never use this, but it does exist as something to be aware of.

Shadow Casting

There is a fairly recent addition to the engine that allows objects to cast shadows. In order to get this lighting behavior, you have to set Objcast Lighting from the pull down menus. Make sure you get a recent menus.cfg so that it appears on the menu. Any object whose Object System > Immobile property is set will cast shadows. Most objects that seem sensible to cast shadows have already been set to this, but if you find one that you think should (or one that shouldn’t that currently does) please inform someone so that it can be fixed.

Warning: Objcast lighting is very slow! You probably only want to use it when you are in the very final stages of lighting an area.

Moving Terrain

See also: Moving Terrain.doc

Generally speaking, moving terrain is a mobile OBB physics object that the player can stand on, and that moves around in the world along a fixed path. This is primarily useful for things like lifts and elevators, that can be used to get the player up to a higher elevation. You can also use it for object moving horizontally, like a cargo conveyor or the like.

The basic principle of a lift is fairly straightforward, but lengthy. First off all, you have to have the track that the lift will move along. This is just a series of Elevator Path objects (basically simple Markers), interconnected with TPath links. Each link points to the next waypoint in the path. So if you have a straightforward elevator with only two stops, then you just put one Elevator Path at each end, and TPath link them to each other. Those links specify the speed of the platform moving along that segment of the path, so you can alter the speed simply by editing the data on those links.

Once that is done, you need to link the actual elevator platform object to the Elevator Path object that is where it will start, using the TPathInit link. If you don’t place it correctly at the start location, it will “right” itself as soon as the simulation begins. Finally, you want to hook up the buttons for actually operating the elevator. Just take your favorite button and ControlDevice it to whichever Elevator Path object you want to elevator to stop at when this button is pushed. The platform should be placed out of the hierarchy, so that it has all the correct moving terrain mojo set on it.

Ladders

There is an even lower-cost way of letting the player go up and down between two heights: the humble ladder. Just put one of these down in the world and the player can climb it. The interface is a tad tricky – just bump into the ladder, and then jump to “climb”. After that you are stuck to the ladder, and have to jump again to detach. Play with it. All you should need to do as a designer is to place down the ladder.

Note two things about ladders. 1) If the ladder is not the right size, get a different ladder out of the hierarchy. Ladders come in many different sizes. 2) Ladders can be a very frustrating part of the game. If you place a ladder that is difficult to get on or off or which tends to lead to your death at the hands of gravity, reconsider your placement of the ladder. Garrett wouldn’t have a hard time mounting ladders, and ideally we want this to be easy for the player as well. The burden of this task falls on the designer. So design superior ladder experiences!

AI

This is a prelimary AI document. There are many more aspects to the AI which I will discuss in the future when they are completed and when I understand them…

See also: Darkai.doc

Basics

The AIs can be found in the “creature” section of the hierarchy. In general, you should just be able to select one and place it into the world as you do with any other object.

In order for any AI to be functional, it is necessary to have two external sources of data: the pathfinding database and the motion database. The former is associated with a particular level and the later is global to the whole game.

The pathfinding database is constructed from the rendering database, so you should build (or re-build) it whenever you portalize altered terrain and after you optimize the level. In other words, updates to the pathfinding database should be synchronized with terrain changes. It is saved with the .mis file so you do not need to regenerate it unless you change the geometry. Type “ai_build_path_database” or select it from your tools menu.

The motion database contains data regarding all motions that the AIs can potentially play. It is built from the motion “schema” files (text files that describe when and how each motion should be played). In general, you will not need to build this database locally as the game should find it from the net (in r:\prj\Thief2\art\finals\mschema).

Assuming that you have built the pathfinding database, and have access to a motion database, the AIs should do their thing (whatever that is) if you place them into the world.

Every AI is defined by a bunch of properties which can be found under a number of different “AI” subheadings in the property list. The most important of these is “AI” property itself. This is a string property that determines which behavior set is used by the AI. A behavior set is a collection of AI abilities. An ability represents the AIs capacity to perform a kind of action like melee combat, ranged combat or investigation.

In general, you will not need to know anything about the specific abilities or behavior sets as these will be pre-determined in the object hierarchy. However, particular abilities will be affected by particular AI properties – for example, the turret behavior set includes the device ability which is affected by the “device parameters” property. Ability related properties can be found under “AI Ability Settings” in the property list.

In this document I will discuss some of the ability properties as they apply to the existing Thief behavior sets. In the future there will be many more behavior sets and I will probably prepare a sequel document which discusses them.

Awareness & Alertness

All AIs share the concepts of awareness & alertness. Awareness describes the AIs perception of a target (e.g., the player) and alertness describes the AIs general level of alarm. Alertness values range from 0 to 3 (lowest to highest). AIs awareness of a target and general alertness levels depend on many factors including the visibility & audibility of the target. Different AIs can have different sensory sensitivities which can be altered through property settings. More on this below.

Vision Cones

Each AI can have up to 6 (!) vision cones. Each vision cone is described in the “Vision description” property (found under AI). Each vision cone describes the AIs ability to sense in a particular arc around itself. When you describe a vision cone, you determine the horizontal and vertical arcs that that cone spans, the range within that cone and the “acuity”. Acuity is used to measure how good the AI is at seeing objects within each cone. Acuity is measured in arbitrary units. 100 seems to be “normal”.

In general, you will probably not need to adjust vision cones on AIs since they will come with default settings that should be correct.

It is important to note that AIs will make visibility calculations based on the calculated light level so they cannot see the player in a totally dark area.

Cameras
Cameras are perhaps the simplest AIs. A camera is a fixed position AI that rotates around whilst scanning. When it detects an enemy, it will track that object until it loses sight of it again, at which time it will resume scanning. At the time of detection the camera broadcasts messages along special links. These messages can be used to activate scripts (for example, alerting a monster or opening a door).

Both cameras and turrets are sub-classes of “devices”. Devices differ from regular AIs in that they are not mesh models (with joints), but are regular objects that must be animated through axles. Each device can have as many as two axles. The first is used to rotate the object and the second is used to raise or lower the object when it becomes alerted or unalerted. The “Device: parameters” property (under AI abilities) specifies which axles are used for these purposes and at what speed the device moves along the raise axle. The rotational speed of the camera is determined by the “AI Movement: Turn Rate” property.

Cameras also make use of a camera-specific ability property. This property specifies what range of angles the camera will rotate between. For example, you can set up a camera to rotate a full 360 degrees (the default) or to just scan back and forth from –45 to +45 degrees. Note that a camera will track in a full 360 degrees.

Cameras have, by default, very specific vision cones, extending in a 90 degree arc in front of themselves.

When a camera is alerted it broadcasts a message along all “AI Camera” links that are attached. You can set up what message is sent along these links by editing the data field on the link. For example, if you wanted the camera to open a door you would attach a link between the camera and the door and specify the message by editing the camera data to read “switch on”.

Turrets

Turrets are also devices and they make use of the ability of the device to raise or lower themselves. When a target is identified, the turret will raise itself up and from that time on it will track and shoot at the target.

What kind and how many projectiles a turret fires is determined by what kind of weapon it is linked to. For this purpose, we use a “AI Ranged Weapon” link. This link should go to a weapon archetype. For example, the slug turret is linked to the “Slug Thrower” weapon. The slug thrower has a number of properties on it which define what kind of projectiles are launched, what the fire rate of the gun is, what the maximum range of the gun is and so on. In general, you will not need to adjust these properties.

Ranged Combat AIs

Note: This section discusses a Shock 2 ranged combat monster, the Shotgun once-grunt. In Thief2, this would be similar to an archer, for example.

Shotgun once-grunts are the first instance of a mobile AI. Unlike the devices, they are mesh models animated through motion capture. This makes them considerably more expensive from a computational point of view, so you will need to be careful about placing too many of them in a single area.

Shotgun once-grunts use the “ranged combat” ability. This ability is different from that used by the turrets, since it includes the behaviors such as pursuing the player. In general, shotgun once-grunts will shoot at the player if they think they have a good shot or attempt to close/pursue if they do not.

More specifically, the ranged combat ability makes use of what are known as cover and vantage points. These are pre-placed markers that identify places where the AI should go to if it is seeking either cover (because it is wounded and wants to escape) or an advantageous firing position. They are just marker objects with the AI “marker: cover” or “marker: vantage” property set. Each such property has a base value (used to determine how useful the point is) and a decay property which determines how long an AI will remain at the marker.

The animation of mesh creatures will make use of the set of motion captures that we have processed and included into the motion database. So as we add new motions, the behavior of the once-grunts may change. Their current behavior is a subset of what we finally expect.

Patrols

Mobile AIs have the ability to patrol. Patrolling is the behavior of repetitively walking from one point to another. You create a patrol circuit by placing down markers and linking them together with “AI Patrol” links. Each such patrol circuit should be “closed”, that is it should form a continuously linked circuit with no branching.

In order to make an individual AI patrol, you will need to set the “AI Patrol” property on the actual AI. This will cause it to find the nearest patrol point and walk along that patrol path.

Pseudo-Scripts

Pseudo-scripts are properties that allow you to script simple AI behaviors without having to write any actual script code. There are several properties that make use of pseudo-scripts. They can all be found under the “AI Responses” category in the property menu. Each pseudo-script that you attach to an AI by adding such a property is triggered by a certain kind of stimulus, for example, the “Alert response” property is triggered when they AI is alerted to a particular level.

When a pseudo-script is triggered, the AI will step through the actions described in the script. Each scripted response has the same basic interface: a series of response steps each consisting of an action and a set of 3 arguments. Here is a brief description of the various action types:

· script message: send a message to a script, argument 1 is interpreted as the script message and arguments 2 & 3 are interpreted as script message data
· play sound/motion: play a motion or sound specified by tags. if argument 1 is set then a sound is played, argument 1 is interpreted as a sound concept and argument 2 is interpreted as tags to be passed to the sound request. if not and argument 3 is set, then a motion is played and argument 3 is interpreted as tags to be passed to the motion request.
· become hostile: make the AI attack
· enable investigate: make the AI investigate
· goto object: goto a named object, argument is interpreted as the object name
· frob object: frob a named object
· wait: wait for a number of seconds (argument 1), can optionally specify tags to be added to the motion request used while waiting (argument 2)
· mprint: print a debugging string (argument 1)
· add/remove meta-property: argument 1 specifies adding (“add”) or removing (“remove”). argument 2 specifies the name of the meta-property and argument 3 is a list of objects to add or remove to or from.
· add link: adds a link named argument 1 from object named argument 3 to object named argument 2. you can use the “*” character as a wildcard for either or both objects.
· remove link: like add link, only remove.
· face: turn towards object named argument2 at an angle specified by argument 1
· signal: this sends out a signal to other AIs. I have yet to understand this system, so I will update when I can.
Particle Overview

The “particle system” is a generalized method for having a lot of small “particles” that can move in interesting way. A whole collection of them can be represented by a single object in the editor, which is very convenient. An individual particle within the particle effect can be of a variety of shapes, including a bitmap image. There are many parameters to play with in the particle system, and that flexibility will let us represent a wide variety of special effects.

Most particle effects are specified through the SFX > Particles property. Launched particle groups (see below) also need to set their SFX > Particle Launch Info property. Because these are instantiated properties, if there are changes to the archetype that need to get propagated down into your objects, you have to either re-place them or use hilight_add_prop and hilight_rem_prop to re-instantiate the properties. The “true names” of these properties are ParticleGroup and PGLaunchInfo.

Like all other objects with properties, you can get away 90% of the time by just placing already existing particle groups from their archetypes in the object hierarchy. However, a good familiarity with the capabilities of the particle system will help you know how to customize those effects for your particular spaces, and may give you inspiration for generating new effects.

Individual Particles

Each individual particle can be rendered as a simple geometric shape (disc, square), a bitmap, or as a single pixel (no matter the distance). If a bitmap is used, the bitmap will always turn to face you, and it will scale up or down as your distance to it changes. Whenever you specify a bitmap, you can also instead specify one bitmap from a random set of them. This is established on the art side and should be transparent when being used from the design side.

For geometric shapes and pixels, you have to specify the color of the particle. This color comes out of the “reference palette”, which is shared between particles (including particle bitmaps), sky textures, and water textures.

Particle Groups

Here is where the real fun starts. Particles are organized into particle groups, which control their generation, destruction, and movement pattern. The actual particle property, placed on your SFX object, specifies the behavior of the entire particle group, rather than any individual particle. There are two basic types of particle groups: launched, and rotating.

In a launched group, each individual particle is launched out along some path. You can launch particles as “one-shots”, which means that once they have completed their path they are gone forever, or as “continual” where they are re-launched once they complete their trip. Launched particles can have a gravity vector, as well as an initial veloctiy vector. You can specify how often they are launched, and provide the dimensions of the space they are launched in (as a bounding box, sphere, or cylinder).

Launched particle groups can also be set to “precompute” which is a significant speed optimization, though it means that the particles in your group will repeat their pattern after a little while. You can also set your particle group to start out with particles already launched.

The other category of group is rotating particle groups. There are several available shapes, namely sphere (hollow and filled), cube (hollow and filled), disk, circle, and pyramid. Particles in a rotating group are instantiated once and move around within that shape. Rotating groups can either rotate smoothly, or move in “pulses”, and the speed of the rotation can be set in the property.

The group itself can move according to variety of different modes, such as attached to an object, trailing an object, immobile, or moving with a certain velocity.

Particle Parameters

All particles have some common parameters that control key behaviors like the number of particles in the group, the size of the particles, their color (or bitmap), alpha value (translucency). These are all set, as you might expect, through the property. There are also some more arcane options that you can set on particles:

· Always simulate (individual and group): This flag determines whether the particle group is still moving when you can’t look at it. Generally, you want to always simulate things which are very short in nature, or very distinctive in their motion so that the fact that they are frozen inbetween is not noticeable. For most steady state decorative effects, you do not want these flags set.

· Sort (vs terrain, vs particles): These are mostly irrelevant in hardware, on account of z-buffering. Generally, you should not set this. However, if you are having strange rendering issues where the particles look wrong in 3D space, try playing with this parameter and see whether it fixes the problem. If so, we should take another look at the special effect in question, since this is a fairly slow option.

· Collide with terrain: These particles will go away when they hit terrain, in addition to when they time out. Again, because we have z-buffering, this is not as important to consider. Most purely decorative particle effects should leave this off, as it is slow.

· Subpixel (alpha, skip): These are optimizations for changing the appearance of particles when they get below one pixel in size. Alpha subpixel means they are still drawn but more transparently, while skip means they are not drawn at all. Use these to tune your effect if it is having problems when viewed at medium to far distances.

The Tweq System

The tweq system is actually a bunch of different sub-systems, all of which are concerned with various forms of simple animation. Tweqs are specified by properties on objects. All tweqs have two associated properties: one which specifies the nature of the tweq and the other of which specifies the current state of the tweq (whether it is active or not, when it started, etc).

The eight types of tweqs are:

1. Scale: change object size.

2. Rotate: change object orientation.

3. Joints: change model joint positions.

4. Models: change object model.

5. Delete: destroy an object.

6. Emitter: emit objects.

7. Flicker: do nothing – use for script timing purposes.

8. Lock: change lock states.

Although tweqs all have their own unique properties, they share a lot of fields in common and many of the fields are interpreted in the same way for different tweqs.

Tweqs do nothing until they are activated. Tweqs can be activated in a number of different ways: manually through altering the tweq state property, through scripts or through code.

First, let’s take a look at some fields that are in common between all tweq types. These fields are part of each tweq property:

Halt

Tweqs animate through some sequence of states. When the tweq reaches the end of its animation, it uses the halt field of its tweq property to determine what should happen next. The halt field can take on the following values:

· destroy obj: like it says.

· remove prop: removes the tweq property from the object, effectively ending the tweq and preventing it from re-starting in the future.

· stop tweq: stop the tweq, but don’t remove the property.

· continue: reverse the animation back to the previous start value so that the tweq oscillates between the start and end values of its animation.

· slay obj: destroy the object, but allow it to go through its death sequence if it has one.

AnimC

A set of flags that affect the animation of the tweq:

· no-limit: the tweq continues to animate without ever halting at a particular value.
· sim: the tweq animates all the time even when the player is not looking at it. This flags should generall not be set as sim tweqs will be costing us CPU cycles even when they are on the other side of the level. An example of a non-sim tweq would be a purely decorative cycling animation. A sim-tweq would be an explosion that needs to complete whether the player is looking or not.
· wrap: the tweq resets to its start value when it reaches the end of its animation, thus it will never halt.
· one-bounce: the tweq will reverse to its start value when it reaches the end value, but will halt once it gets back to the start.
· sim small-rad: the tweq will simulate only when the player is “close” to it or looking at it.
· sim large-rad: the tweq will simluate when the player is close or looking at it, but further away than with the small-rad flag.
MiscC
Miscellaneous flags:

· anchor: for model animations, anchor the bottom of the model rather than the center. So, for example, a scaled model will stay flat on the floor rather than expanding from its center.

· scripts: send messages to scripts when “interesting” tweq events happen – for example, the end of an animation cycle. For advanced users only!

· random: for tweq emit only. Select launch velocity randomly.

· grav: for tweq emitters – make the emitted objects subject to gravity. Only relevant if the emitted object’s archetype does not already have a physics property.

· zero-vel: don’t add emitter’s velocity to the emitted object’s velocity

· tell-ai: notify the AI about the emitted object. Used for AI alertness calculations?

· push-out: for a physical emitter only – try to push the emitted object away from the emitter so that it doesn’t collide with it.

· negative-logic: ???

· relative-velocity: make the emitted particle’s velocity relative to the orientation of the emitter, not in world coordinates.

CurveC

Animation curve modifications:

· jitter-lo/jitter-hi: jitter the animation curve (apply random noise). Use this, for example, to make emitted particles come out at a non-regular rate.

· mul: apply jitter effects multiplicatively rather than additively.

There are also a bunch of properties that are common between all tweq state properties:

AnimS

Animation state flags. Most of these are for internal use only, I believe. The important one is:

· on: the tweq animation is currently running. You (or a script) need to set this to get a tweq to start.

CurTime: the current internal clock for the anim.

Frame: the current frame of the anim. You can screw around with these if you want the anim to start at somewhere other than the beginning.

Tweq Types

Here are some details on each tweq type and the various parameters associated with each.

Scale

Use this property to change model sizes. There are 3 rate/min/max fields in the property that describe the scale change rate, minimum & maximum size (as fraction of original) for each dimension of the model.

Model

Use this to change models. There 6 model fields that you should fill in with the various model archetypes that you wish to cycle through. The rate parameter specifies how often a model change is made (in milliseconds).

Emitter

Use this to generate objects. The rate parameter specifies how often a new object should be produced (in milliseconds). MaxFrames specifies how many total objects are produced. EmitWhat specifies what object archetype to use for the emitted objects. The final velocity field is the velocity imparted to the generated objects.

Delete

Use this to automatically delete objects (for example, sparks emitted from a generator). The rate parameter specifies how long the object will last after the tweq is activated.

Flicker

This actually does nothing. But because tweqs send script messages, you can use it to control script timing in a property driven manner.

Joint
Use this to animate BSP objects that have internal joints. The property has entries for up to 6 different joints and the primary joint number. Each joint animation has its own set of anim and curve flags and a vector specifying the animation rate, minimum & maximum value.

The joint tweq state also has entries for the overall animation as well as the animation on each individual joint.

Rotate

Use this to rotate objects. In the property you specify the rotation rate, minimum & maximum values for each of the three axes. The state property has separate entries for each axis animation.

Lock

You can use this to change lock states (I think). I haven’t played with it and I don’t think anyone will need to, so don’t bother with it for the moment.

Examples

Create a room containing objects that demonstrate each of the following tweq properties:

· scale: make the object enlarge and contract

· model: make the object toggle between 3 different models

· emitter: make the object produce 5 new objects (only) that shoot out in random directions

· delete: make an object that is deleted after 5 seconds

· joint: make a turret (model: tu_s) that spins around (joint 1) and raises and lowers its top section (joint 0)

· rotate: make an object that rotates around all 3 axes simultaneously.

Experiment with the various flags like sim, one-bounce, wrap and so on. There is a level demonstrating each of these tweqs in levels/school/tweq.mis.

