Basic instructions for the Motion Database Editor
Setup

You will probably want a new directory to work on your motion schemas. I don’t recommend using your Thief directory; you’ll be upset later when you break the motion database and don’t have a backup.

Where ever you decide to work on motion schemas, you need two subdirectories. One, called MSchema, contains all the schema files. The other one, called Motions, contains all the motion files you want in the database, both the .MI and the .MC files. The motion files are needed because the database contains the contents of the .MI files, and it also needs to access the .MC files for important information which is also included in the database. You should just unzip the entire motions.crf file into the Motions subdirectory.
Running the Program

The program to build the database is “Makmdb.exe”. It wants to live in the directory which contains your MSchema and Motions directories. It will search through those directories when it is run, digging out all the information it needs.

The command line sequence is “Makmdb [output file]”. If no output file is specified, it produces a new database called Nmotiondb.bin. This is so it doesn’t overwrite the normal motiondb.bin, which keeps you from getting too annoyed at me. You can specify any output name you want, however, Thief, Dromed, and the SS2 counterparts want to see motiondb.bin. After you’ve successfully built the database you can change the name to motiondb.bin and install it in your Thief directory. Carefully watch all the AI motions to make sure you haven’t broken any. The player motions (sword arm and bow) are VERY fragile. Check to make sure they still work.
The program can take some time to run. I had to figure out how to build the database with some brute force methods, and I haven’t gone back to finesse them yet. So be patient.

Checking Your Work

I’ve included a program called “Motions.exe”. It takes apart a motion database and dumps out more information than you could ever want to know about it. Using this, you can examine your new motion database and see if the important changes you made showed up the way you expected them to.

Run the program on the command line as follows; “Motions mymotiondbname”. It always produces an output file named “mot.dmp.txt”. Simply open it with a text editor, then go to the Thief Editors forum and ask what all the stuff is.

The .MOC files

There are 3 important files which are read in first during the database creation. Don’t change the names of these, the program can’t handle it. They are Torsos.moc, Groups.moc, and Tags.moc.

Torsos.moc

This file defines the names of the different kinds of torsos used by the critters in Thief and SS2. I’m pretty sure they need to be in the order they’re in. Don’t change anything in here unless you know what you’re doing or really want to experiment. As far as I know (at this point), changing this doesn’t allow us to do anything more useful in the editors. It seems the torso definitions are already defined in the editor.
Groups.moc

This file matches up with the motion group names in the Object Hierarchy. I haven’t tried changing the order or the names. I don’t recommend it.

Tags.moc

Any new tags you want to add to the motions hierarchy need to be defined here first. If you want a group of sitting motions, you’ll want to add “Sitting”. If you want a guard to be walking with a bottle, you may want to add “WithBeer”, etc. Define them here first.

The two numbers which follow the tag name are used (somehow) to balance how motions are used, or to hint at the depth in the motion hierarchy. (I really don’t know). If the first number is 1, the tag is expected to be a major group of its own, like Locomote or Conversation. (Think of it as a verb.) If it is 0, it’s more like an adverb, as in WithSword or WithTray.
The second number gets summed with all the 2nd numbers above it in the hierarchy. I don’t really know why, it’s probably some kind of weighting. Anyway, if you’re creating a new tag, pick a number from a similar kind of tag.

The MOS files

Here’s where I’m expecting you to have the most fun. Adding existing motions which aren’t reachable via the current motion hierarchy is pretty easy. We may have been able to play them in the Motion Editor, but couldn’t get to them using motion tags. Then there are several hundred (in T2) which were in the motions.crf file, but never linked into the database. And, since we haven’t been able to play them in the past, we don’t know what they are.

Back to the technical details;

Each .MOC file requires a keyword in the beginning; it has to come before any schema or motion definitions. This is the “torso” keyword, and it defines what kind of basic creature design the motions are for. This had better match one of the torso names in torsos.moc.

An optional keyword is “global”. This just defines any tags which would have been on every schema line, but saves you the typing. However, don’t use a global which leaves NO tags after the schema line, the program can’t really handle that yet.

Schema
The line which defines a schema creates a place in the motion hierarchy for the motions it is going to include. The tags which define the schema are the way you access the motion, like Conversation 22.
Under Zombie.mos, let’s take a look at one schema entry, as well as the two main keywords;

global Zombie 0

torso Biped

schema Locomote 0, LocoUrgent 0

MType GroundLocoPair

TimeScale 0.7

XYZScale 0

motion BZ111010 0 0

motion BZ111011 0 0

What does all this mean? Well, by combining the global tags with the schema definition, these two motions are accessed by using the tags “Zombie 0, Locomote 0, LocoUrgent 0”. The game engine will tell the zombie to run after you (or possibly away) using these tags. You could also use them in a conversation. The paired motions represent left and right foot motions. Not all AI use paired motions to move, but for bipeds it’s pretty common.

The MType flag defines which kind of motion this is, and correlates it to the list of motion types in the Group.moc file. It had better match.

TimeScale – This is actually the same two motions used for a zombie’s normal walk. But in that schema (just Locomote 0), the TimeScale is 0. Here it’s 0.7. What does this mean? It’s like the Creature -> Time Warp in Dromed. It speeds up the motions if it is lower than 1. If it is > 1, then it slows down the motions. 0 indicates to use the default playback speed.

XYZScale – This is similar to the TimeScale, but it makes the motions more subtle or exaggerated. It’s hard to find examples of it, but having a servant do the following motion in a conversation (Locomote 0, Direction 4) and at the same time having a Hammerite do the same motion (Locomote 0, MeleeCombat 0, Direction 4), you can see the Hammer move back quite a bit more than the servant. But they are the same motion files.

Motion – Each name is the name of the motion file (like the wav file name in sound schema). The numbers following it are something I haven’t been able to figure out, so I dumped them out of the database and assigned them to each motion. If you are trying out a new motion, using 0 0 or 0 500 should almost always work. (I know I’m going to regret saying that). The second number does seem to be some kind of speed scaling, but it happens for all users of the motion. The ones specified in the schema (TimeScale) only happens when you use the specified schema name.

Simple Examples;

In “Lord Fishkill’s Curse”, I needed access to a motion which was in the motion database, but it was buried deeply under the tag PlaySpecMotion. There was no way to specify it. So, I hacked the database (in binary at the time). To do it properly, this is how I would have changed the schema.
I selected the tags “Misc 3” to be my target. It currently supported a broken motion, the AI bent funny and jerked through the end of the motion. Remember, at the time, I couldn’t make my own tags.
In the Conversation.mos file, the Misc 3 entry looks like;
schema Misc 3

MType GroundAction

TimeScale 0

Scale2 0

motion cpssitc1 0 500

The motion I wanted was a sword drawing motion, BH112203. I think Dark Angel found it a long time ago, but there was no way to get to it.
Changing the schema entry to the following;
schema Misc 3

MType GroundAction

TimeScale 0

Scale2 0

motion BH112203 0 500

gives me access to the motion by using “Misc 3” in a conversation.

Another example;

Let’s expand the number of conversations. There are some unused motion which I don’t know what they do in T2, so let’s get them in a form so we can play them in conversations and see how they work.

A conversation entry looks like;

schema Conv 42

MType GroundAction

TimeScale 0

XYZScale 0

motion plycrchd 0 500

So, we’ll add some new motions. (delmelat, delmelbu, delmesl, delmesr, delmlstd, delrelnt). I don’t know what they do, someone will have to experiment.

Let’s skip over the 40’s for our new conversations, so we don’t get confused with existing ones. So, our new entries would look like;

schema Conv 50

MType GroundAction

TimeScale 0

XYZScale 0

motion delmelat 0 500

schema Conv 51

MType GroundAction

TimeScale 0

XYZScale 0

motion delmelbu 0 500

.

.

.

schema Conv 55

MType GroundAction

TimeScale 0

XYZScale 0

motion delrelnt 0 500

If we were to rebuild the motion database and make some conversations which play the motions, we could see what they do. Or, we could now play them in the Dromed Motion Editor (the one inside Dromed, not Weyoun’s brilliant creation).
Cautions

It is very easy to break the player motions, like the sword arm and the bow. Be very careful if you mess with them. You may want to contact me via email (rsybel@adelphia.net) or at TTLG forums, the Thief Editor forum. Also, if you make a motion database, install it in your Thief directory, go in game, and your AI are all standing with their arms outstretched, you can be pretty sure you broke it. Dromed doesn’t complain about the database with error messages (not even in the monolog), dialog boxes, or anything else. You pretty much have to go make sure everyone is moving properly to determine if it’s working.
Start from the provided schemas, and make changes slowly. This isn’t as robust as the reload_schema functions in Dromed. Also, I don’t know many of the failure modes in game yet. Only time and experience will tell.
Important note!

When you run the program, you will see it complain about two missing files. These are bowflex and camSynch. They don’t exist! So, why am I including them in the schema? Well, I think these are the names of two scripts which control the player arm motions instead of motion files. Remember how I said the player motions are easy to break? These are some of the reasons. The database has carefully broken areas around those files and related entries, as well as listing them in special places. You have no idea how difficult it was to figure those out. So, if you mess around with this stuff, don’t come crying to me. (. It took me many hours to get those motions working again.
